\(\int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx\) [3108]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-2)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 268 \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\frac {(d e-c f) (a+b x)^{1+m} (c+d x)^{-4-m}}{d (b c-a d) (4+m)}-\frac {(a d f (4+m)-b (3 d e+c f (1+m))) (a+b x)^{1+m} (c+d x)^{-3-m}}{d (b c-a d)^2 (3+m) (4+m)}-\frac {2 b (a d f (4+m)-b (3 d e+c f (1+m))) (a+b x)^{1+m} (c+d x)^{-2-m}}{d (b c-a d)^3 (2+m) (3+m) (4+m)}-\frac {2 b^2 (a d f (4+m)-b (3 d e+c f (1+m))) (a+b x)^{1+m} (c+d x)^{-1-m}}{d (b c-a d)^4 (1+m) (2+m) (3+m) (4+m)} \]

[Out]

(-c*f+d*e)*(b*x+a)^(1+m)*(d*x+c)^(-4-m)/d/(-a*d+b*c)/(4+m)-(a*d*f*(4+m)-b*(3*d*e+c*f*(1+m)))*(b*x+a)^(1+m)*(d*
x+c)^(-3-m)/d/(-a*d+b*c)^2/(3+m)/(4+m)-2*b*(a*d*f*(4+m)-b*(3*d*e+c*f*(1+m)))*(b*x+a)^(1+m)*(d*x+c)^(-2-m)/d/(-
a*d+b*c)^3/(2+m)/(3+m)/(4+m)-2*b^2*(a*d*f*(4+m)-b*(3*d*e+c*f*(1+m)))*(b*x+a)^(1+m)*(d*x+c)^(-1-m)/d/(-a*d+b*c)
^4/(1+m)/(2+m)/(3+m)/(4+m)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.99, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {80, 47, 37} \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\frac {2 b^2 (a+b x)^{m+1} (c+d x)^{-m-1} (-a d f (m+4)+b c f (m+1)+3 b d e)}{d (m+1) (m+2) (m+3) (m+4) (b c-a d)^4}+\frac {(a+b x)^{m+1} (d e-c f) (c+d x)^{-m-4}}{d (m+4) (b c-a d)}+\frac {(a+b x)^{m+1} (c+d x)^{-m-3} (-a d f (m+4)+b c f (m+1)+3 b d e)}{d (m+3) (m+4) (b c-a d)^2}+\frac {2 b (a+b x)^{m+1} (c+d x)^{-m-2} (-a d f (m+4)+b c f (m+1)+3 b d e)}{d (m+2) (m+3) (m+4) (b c-a d)^3} \]

[In]

Int[(a + b*x)^m*(c + d*x)^(-5 - m)*(e + f*x),x]

[Out]

((d*e - c*f)*(a + b*x)^(1 + m)*(c + d*x)^(-4 - m))/(d*(b*c - a*d)*(4 + m)) + ((3*b*d*e + b*c*f*(1 + m) - a*d*f
*(4 + m))*(a + b*x)^(1 + m)*(c + d*x)^(-3 - m))/(d*(b*c - a*d)^2*(3 + m)*(4 + m)) + (2*b*(3*b*d*e + b*c*f*(1 +
 m) - a*d*f*(4 + m))*(a + b*x)^(1 + m)*(c + d*x)^(-2 - m))/(d*(b*c - a*d)^3*(2 + m)*(3 + m)*(4 + m)) + (2*b^2*
(3*b*d*e + b*c*f*(1 + m) - a*d*f*(4 + m))*(a + b*x)^(1 + m)*(c + d*x)^(-1 - m))/(d*(b*c - a*d)^4*(1 + m)*(2 +
m)*(3 + m)*(4 + m))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c
, d, e, f, n, p}, x] &&  !RationalQ[p] && SumSimplerQ[p, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {(d e-c f) (a+b x)^{1+m} (c+d x)^{-4-m}}{d (b c-a d) (4+m)}+\frac {(3 b d e+b c f (1+m)-a d f (4+m)) \int (a+b x)^m (c+d x)^{-4-m} \, dx}{d (b c-a d) (4+m)} \\ & = \frac {(d e-c f) (a+b x)^{1+m} (c+d x)^{-4-m}}{d (b c-a d) (4+m)}+\frac {(3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-3-m}}{d (b c-a d)^2 (3+m) (4+m)}+\frac {(2 b (3 b d e+b c f (1+m)-a d f (4+m))) \int (a+b x)^m (c+d x)^{-3-m} \, dx}{d (b c-a d)^2 (3+m) (4+m)} \\ & = \frac {(d e-c f) (a+b x)^{1+m} (c+d x)^{-4-m}}{d (b c-a d) (4+m)}+\frac {(3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-3-m}}{d (b c-a d)^2 (3+m) (4+m)}+\frac {2 b (3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-2-m}}{d (b c-a d)^3 (2+m) (3+m) (4+m)}+\frac {\left (2 b^2 (3 b d e+b c f (1+m)-a d f (4+m))\right ) \int (a+b x)^m (c+d x)^{-2-m} \, dx}{d (b c-a d)^3 (2+m) (3+m) (4+m)} \\ & = \frac {(d e-c f) (a+b x)^{1+m} (c+d x)^{-4-m}}{d (b c-a d) (4+m)}+\frac {(3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-3-m}}{d (b c-a d)^2 (3+m) (4+m)}+\frac {2 b (3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-2-m}}{d (b c-a d)^3 (2+m) (3+m) (4+m)}+\frac {2 b^2 (3 b d e+b c f (1+m)-a d f (4+m)) (a+b x)^{1+m} (c+d x)^{-1-m}}{d (b c-a d)^4 (1+m) (2+m) (3+m) (4+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.62 \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=-\frac {(a+b x)^{1+m} (c+d x)^{-4-m} \left (d e-c f+\frac {(3 b d e+b c f (1+m)-a d f (4+m)) (c+d x) \left (a^2 d^2 \left (2+3 m+m^2\right )-2 a b d (1+m) (c (3+m)+d x)+b^2 \left (c^2 \left (6+5 m+m^2\right )+2 c d (3+m) x+2 d^2 x^2\right )\right )}{(b c-a d)^3 (1+m) (2+m) (3+m)}\right )}{d (-b c+a d) (4+m)} \]

[In]

Integrate[(a + b*x)^m*(c + d*x)^(-5 - m)*(e + f*x),x]

[Out]

-(((a + b*x)^(1 + m)*(c + d*x)^(-4 - m)*(d*e - c*f + ((3*b*d*e + b*c*f*(1 + m) - a*d*f*(4 + m))*(c + d*x)*(a^2
*d^2*(2 + 3*m + m^2) - 2*a*b*d*(1 + m)*(c*(3 + m) + d*x) + b^2*(c^2*(6 + 5*m + m^2) + 2*c*d*(3 + m)*x + 2*d^2*
x^2)))/((b*c - a*d)^3*(1 + m)*(2 + m)*(3 + m))))/(d*(-(b*c) + a*d)*(4 + m)))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1183\) vs. \(2(268)=536\).

Time = 5.28 (sec) , antiderivative size = 1184, normalized size of antiderivative = 4.42

method result size
gosper \(\text {Expression too large to display}\) \(1184\)
parallelrisch \(\text {Expression too large to display}\) \(4641\)

[In]

int((b*x+a)^m*(d*x+c)^(-5-m)*(f*x+e),x,method=_RETURNVERBOSE)

[Out]

-(b*x+a)^(1+m)*(d*x+c)^(-4-m)/(a^4*d^4*m^4-4*a^3*b*c*d^3*m^4+6*a^2*b^2*c^2*d^2*m^4-4*a*b^3*c^3*d*m^4+b^4*c^4*m
^4+10*a^4*d^4*m^3-40*a^3*b*c*d^3*m^3+60*a^2*b^2*c^2*d^2*m^3-40*a*b^3*c^3*d*m^3+10*b^4*c^4*m^3+35*a^4*d^4*m^2-1
40*a^3*b*c*d^3*m^2+210*a^2*b^2*c^2*d^2*m^2-140*a*b^3*c^3*d*m^2+35*b^4*c^4*m^2+50*a^4*d^4*m-200*a^3*b*c*d^3*m+3
00*a^2*b^2*c^2*d^2*m-200*a*b^3*c^3*d*m+50*b^4*c^4*m+24*a^4*d^4-96*a^3*b*c*d^3+144*a^2*b^2*c^2*d^2-96*a*b^3*c^3
*d+24*b^4*c^4)*(a^3*d^3*f*m^3*x-3*a^2*b*c*d^2*f*m^3*x-2*a^2*b*d^3*f*m^2*x^2+3*a*b^2*c^2*d*f*m^3*x+4*a*b^2*c*d^
2*f*m^2*x^2+2*a*b^2*d^3*f*m*x^3-b^3*c^3*f*m^3*x-2*b^3*c^2*d*f*m^2*x^2-2*b^3*c*d^2*f*m*x^3+a^3*d^3*e*m^3+7*a^3*
d^3*f*m^2*x-3*a^2*b*c*d^2*e*m^3-22*a^2*b*c*d^2*f*m^2*x-3*a^2*b*d^3*e*m^2*x-10*a^2*b*d^3*f*m*x^2+3*a*b^2*c^2*d*
e*m^3+23*a*b^2*c^2*d*f*m^2*x+6*a*b^2*c*d^2*e*m^2*x+20*a*b^2*c*d^2*f*m*x^2+6*a*b^2*d^3*e*m*x^2+8*a*b^2*d^3*f*x^
3-b^3*c^3*e*m^3-8*b^3*c^3*f*m^2*x-3*b^3*c^2*d*e*m^2*x-10*b^3*c^2*d*f*m*x^2-6*b^3*c*d^2*e*m*x^2-2*b^3*c*d^2*f*x
^3-6*b^3*d^3*e*x^3+a^3*c*d^2*f*m^2+6*a^3*d^3*e*m^2+14*a^3*d^3*f*m*x-2*a^2*b*c^2*d*f*m^2-21*a^2*b*c*d^2*e*m^2-5
3*a^2*b*c*d^2*f*m*x-9*a^2*b*d^3*e*m*x-8*a^2*b*d^3*f*x^2+a*b^2*c^3*f*m^2+24*a*b^2*c^2*d*e*m^2+58*a*b^2*c^2*d*f*
m*x+30*a*b^2*c*d^2*e*m*x+34*a*b^2*c*d^2*f*x^2+6*a*b^2*d^3*e*x^2-9*b^3*c^3*e*m^2-19*b^3*c^3*f*m*x-21*b^3*c^2*d*
e*m*x-8*b^3*c^2*d*f*x^2-24*b^3*c*d^2*e*x^2+3*a^3*c*d^2*f*m+11*a^3*d^3*e*m+8*a^3*d^3*f*x-10*a^2*b*c^2*d*f*m-42*
a^2*b*c*d^2*e*m-34*a^2*b*c*d^2*f*x-6*a^2*b*d^3*e*x+7*a*b^2*c^3*f*m+57*a*b^2*c^2*d*e*m+56*a*b^2*c^2*d*f*x+24*a*
b^2*c*d^2*e*x-26*b^3*c^3*e*m-12*b^3*c^3*f*x-36*b^3*c^2*d*e*x+2*a^3*c*d^2*f+6*a^3*d^3*e-8*a^2*b*c^2*d*f-24*a^2*
b*c*d^2*e+12*a*b^2*c^3*f+36*a*b^2*c^2*d*e-24*b^3*c^3*e)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1777 vs. \(2 (268) = 536\).

Time = 0.30 (sec) , antiderivative size = 1777, normalized size of antiderivative = 6.63 \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\text {Too large to display} \]

[In]

integrate((b*x+a)^m*(d*x+c)^(-5-m)*(f*x+e),x, algorithm="fricas")

[Out]

(2*(3*b^4*d^4*e + (b^4*c*d^3 - a*b^3*d^4)*f*m + (b^4*c*d^3 - 4*a*b^3*d^4)*f)*x^5 + (a*b^3*c^4 - 3*a^2*b^2*c^3*
d + 3*a^3*b*c^2*d^2 - a^4*c*d^3)*e*m^3 + 2*(15*b^4*c*d^3*e + (b^4*c^2*d^2 - 2*a*b^3*c*d^3 + a^2*b^2*d^4)*f*m^2
 + 5*(b^4*c^2*d^2 - 4*a*b^3*c*d^3)*f + (3*(b^4*c*d^3 - a*b^3*d^4)*e + 2*(3*b^4*c^2*d^2 - 5*a*b^3*c*d^3 + 2*a^2
*b^2*d^4)*f)*m)*x^4 + (60*b^4*c^2*d^2*e + (b^4*c^3*d - 3*a*b^3*c^2*d^2 + 3*a^2*b^2*c*d^3 - a^3*b*d^4)*f*m^3 +
(3*(b^4*c^2*d^2 - 2*a*b^3*c*d^3 + a^2*b^2*d^4)*e + 5*(2*b^4*c^3*d - 5*a*b^3*c^2*d^2 + 4*a^2*b^2*c*d^3 - a^3*b*
d^4)*f)*m^2 + 20*(b^4*c^3*d - 4*a*b^3*c^2*d^2)*f + (3*(9*b^4*c^2*d^2 - 10*a*b^3*c*d^3 + a^2*b^2*d^4)*e + (29*b
^4*c^3*d - 66*a*b^3*c^2*d^2 + 41*a^2*b^2*c*d^3 - 4*a^3*b*d^4)*f)*m)*x^3 + (3*(3*a*b^3*c^4 - 8*a^2*b^2*c^3*d +
7*a^3*b*c^2*d^2 - 2*a^4*c*d^3)*e - (a^2*b^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2)*f)*m^2 + (60*b^4*c^3*d*e + ((b^
4*c^3*d - 3*a*b^3*c^2*d^2 + 3*a^2*b^2*c*d^3 - a^3*b*d^4)*e + (b^4*c^4 - 2*a*b^3*c^3*d + 2*a^3*b*c*d^3 - a^4*d^
4)*f)*m^3 + (3*(4*b^4*c^3*d - 9*a*b^3*c^2*d^2 + 6*a^2*b^2*c*d^3 - a^3*b*d^4)*e + (8*b^4*c^4 - 14*a*b^3*c^3*d -
 3*a^2*b^2*c^2*d^2 + 16*a^3*b*c*d^3 - 7*a^4*d^4)*f)*m^2 + 4*(3*b^4*c^4 - 12*a*b^3*c^3*d - 12*a^2*b^2*c^2*d^2 +
 8*a^3*b*c*d^3 - 2*a^4*d^4)*f + ((47*b^4*c^3*d - 60*a*b^3*c^2*d^2 + 15*a^2*b^2*c*d^3 - 2*a^3*b*d^4)*e + (19*b^
4*c^4 - 36*a*b^3*c^3*d - 15*a^2*b^2*c^2*d^2 + 46*a^3*b*c*d^3 - 14*a^4*d^4)*f)*m)*x^2 + 6*(4*a*b^3*c^4 - 6*a^2*
b^2*c^3*d + 4*a^3*b*c^2*d^2 - a^4*c*d^3)*e - 2*(6*a^2*b^2*c^4 - 4*a^3*b*c^3*d + a^4*c^2*d^2)*f + ((26*a*b^3*c^
4 - 57*a^2*b^2*c^3*d + 42*a^3*b*c^2*d^2 - 11*a^4*c*d^3)*e - (7*a^2*b^2*c^4 - 10*a^3*b*c^3*d + 3*a^4*c^2*d^2)*f
)*m + (((b^4*c^4 - 2*a*b^3*c^3*d + 2*a^3*b*c*d^3 - a^4*d^4)*e + (a*b^3*c^4 - 3*a^2*b^2*c^3*d + 3*a^3*b*c^2*d^2
 - a^4*c*d^3)*f)*m^3 + (3*(3*b^4*c^4 - 4*a*b^3*c^3*d - 3*a^2*b^2*c^2*d^2 + 6*a^3*b*c*d^3 - 2*a^4*d^4)*e + (7*a
*b^3*c^4 - 22*a^2*b^2*c^3*d + 23*a^3*b*c^2*d^2 - 8*a^4*c*d^3)*f)*m^2 + 6*(4*b^4*c^4 + 4*a*b^3*c^3*d - 6*a^2*b^
2*c^2*d^2 + 4*a^3*b*c*d^3 - a^4*d^4)*e - 10*(6*a^2*b^2*c^3*d - 4*a^3*b*c^2*d^2 + a^4*c*d^3)*f + ((26*b^4*c^4 -
 10*a*b^3*c^3*d - 45*a^2*b^2*c^2*d^2 + 40*a^3*b*c*d^3 - 11*a^4*d^4)*e + (12*a*b^3*c^4 - 55*a^2*b^2*c^3*d + 60*
a^3*b*c^2*d^2 - 17*a^4*c*d^3)*f)*m)*x)*(b*x + a)^m*(d*x + c)^(-m - 5)/(24*b^4*c^4 - 96*a*b^3*c^3*d + 144*a^2*b
^2*c^2*d^2 - 96*a^3*b*c*d^3 + 24*a^4*d^4 + (b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*
d^4)*m^4 + 10*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m^3 + 35*(b^4*c^4 - 4*a*
b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m^2 + 50*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2
 - 4*a^3*b*c*d^3 + a^4*d^4)*m)

Sympy [F(-2)]

Exception generated. \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\text {Exception raised: HeuristicGCDFailed} \]

[In]

integrate((b*x+a)**m*(d*x+c)**(-5-m)*(f*x+e),x)

[Out]

Exception raised: HeuristicGCDFailed >> no luck

Maxima [F]

\[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\int { {\left (f x + e\right )} {\left (b x + a\right )}^{m} {\left (d x + c\right )}^{-m - 5} \,d x } \]

[In]

integrate((b*x+a)^m*(d*x+c)^(-5-m)*(f*x+e),x, algorithm="maxima")

[Out]

integrate((f*x + e)*(b*x + a)^m*(d*x + c)^(-m - 5), x)

Giac [F]

\[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\int { {\left (f x + e\right )} {\left (b x + a\right )}^{m} {\left (d x + c\right )}^{-m - 5} \,d x } \]

[In]

integrate((b*x+a)^m*(d*x+c)^(-5-m)*(f*x+e),x, algorithm="giac")

[Out]

integrate((f*x + e)*(b*x + a)^m*(d*x + c)^(-m - 5), x)

Mupad [B] (verification not implemented)

Time = 5.15 (sec) , antiderivative size = 1658, normalized size of antiderivative = 6.19 \[ \int (a+b x)^m (c+d x)^{-5-m} (e+f x) \, dx=\text {Too large to display} \]

[In]

int(((e + f*x)*(a + b*x)^m)/(c + d*x)^(m + 5),x)

[Out]

(2*b^3*d^3*x^5*(a + b*x)^m*(b*c*f - 4*a*d*f + 3*b*d*e - a*d*f*m + b*c*f*m))/((a*d - b*c)^4*(c + d*x)^(m + 5)*(
50*m + 35*m^2 + 10*m^3 + m^4 + 24)) - (x^2*(a + b*x)^m*(8*a^4*d^4*f - 12*b^4*c^4*f + 7*a^4*d^4*f*m^2 - 8*b^4*c
^4*f*m^2 + a^4*d^4*f*m^3 - b^4*c^4*f*m^3 - 60*b^4*c^3*d*e + 14*a^4*d^4*f*m - 19*b^4*c^4*f*m + 48*a*b^3*c^3*d*f
 - 32*a^3*b*c*d^3*f + 2*a^3*b*d^4*e*m - 47*b^4*c^3*d*e*m + 3*a^3*b*d^4*e*m^2 + a^3*b*d^4*e*m^3 - 12*b^4*c^3*d*
e*m^2 - b^4*c^3*d*e*m^3 + 48*a^2*b^2*c^2*d^2*f + 27*a*b^3*c^2*d^2*e*m^2 - 18*a^2*b^2*c*d^3*e*m^2 + 3*a*b^3*c^2
*d^2*e*m^3 - 3*a^2*b^2*c*d^3*e*m^3 + 15*a^2*b^2*c^2*d^2*f*m + 36*a*b^3*c^3*d*f*m - 46*a^3*b*c*d^3*f*m + 3*a^2*
b^2*c^2*d^2*f*m^2 + 60*a*b^3*c^2*d^2*e*m - 15*a^2*b^2*c*d^3*e*m + 14*a*b^3*c^3*d*f*m^2 - 16*a^3*b*c*d^3*f*m^2
+ 2*a*b^3*c^3*d*f*m^3 - 2*a^3*b*c*d^3*f*m^3))/((a*d - b*c)^4*(c + d*x)^(m + 5)*(50*m + 35*m^2 + 10*m^3 + m^4 +
 24)) - (x*(a + b*x)^m*(6*a^4*d^4*e - 24*b^4*c^4*e + 6*a^4*d^4*e*m^2 - 9*b^4*c^4*e*m^2 + a^4*d^4*e*m^3 - b^4*c
^4*e*m^3 + 10*a^4*c*d^3*f + 11*a^4*d^4*e*m - 26*b^4*c^4*e*m - 24*a*b^3*c^3*d*e - 24*a^3*b*c*d^3*e - 12*a*b^3*c
^4*f*m + 17*a^4*c*d^3*f*m + 60*a^2*b^2*c^3*d*f - 40*a^3*b*c^2*d^2*f - 7*a*b^3*c^4*f*m^2 - a*b^3*c^4*f*m^3 + 8*
a^4*c*d^3*f*m^2 + a^4*c*d^3*f*m^3 + 36*a^2*b^2*c^2*d^2*e + 45*a^2*b^2*c^2*d^2*e*m + 22*a^2*b^2*c^3*d*f*m^2 - 2
3*a^3*b*c^2*d^2*f*m^2 + 3*a^2*b^2*c^3*d*f*m^3 - 3*a^3*b*c^2*d^2*f*m^3 + 10*a*b^3*c^3*d*e*m - 40*a^3*b*c*d^3*e*
m + 9*a^2*b^2*c^2*d^2*e*m^2 + 12*a*b^3*c^3*d*e*m^2 - 18*a^3*b*c*d^3*e*m^2 + 2*a*b^3*c^3*d*e*m^3 - 2*a^3*b*c*d^
3*e*m^3 + 55*a^2*b^2*c^3*d*f*m - 60*a^3*b*c^2*d^2*f*m))/((a*d - b*c)^4*(c + d*x)^(m + 5)*(50*m + 35*m^2 + 10*m
^3 + m^4 + 24)) - ((a + b*x)^m*(12*a^2*b^2*c^4*f + 2*a^4*c^2*d^2*f - 24*a*b^3*c^4*e + 6*a^4*c*d^3*e - 8*a^3*b*
c^3*d*f - 26*a*b^3*c^4*e*m + 11*a^4*c*d^3*e*m + 36*a^2*b^2*c^3*d*e - 24*a^3*b*c^2*d^2*e - 9*a*b^3*c^4*e*m^2 -
a*b^3*c^4*e*m^3 + 7*a^2*b^2*c^4*f*m + 6*a^4*c*d^3*e*m^2 + a^4*c*d^3*e*m^3 + 3*a^4*c^2*d^2*f*m + a^2*b^2*c^4*f*
m^2 + a^4*c^2*d^2*f*m^2 + 24*a^2*b^2*c^3*d*e*m^2 - 21*a^3*b*c^2*d^2*e*m^2 + 3*a^2*b^2*c^3*d*e*m^3 - 3*a^3*b*c^
2*d^2*e*m^3 - 10*a^3*b*c^3*d*f*m + 57*a^2*b^2*c^3*d*e*m - 42*a^3*b*c^2*d^2*e*m - 2*a^3*b*c^3*d*f*m^2))/((a*d -
 b*c)^4*(c + d*x)^(m + 5)*(50*m + 35*m^2 + 10*m^3 + m^4 + 24)) + (b*d*x^3*(a + b*x)^m*(b*c*f - 4*a*d*f + 3*b*d
*e - a*d*f*m + b*c*f*m)*(20*b^2*c^2 + a^2*d^2*m + 9*b^2*c^2*m + a^2*d^2*m^2 + b^2*c^2*m^2 - 10*a*b*c*d*m - 2*a
*b*c*d*m^2))/((a*d - b*c)^4*(c + d*x)^(m + 5)*(50*m + 35*m^2 + 10*m^3 + m^4 + 24)) + (2*b^2*d^2*x^4*(a + b*x)^
m*(5*b*c - a*d*m + b*c*m)*(b*c*f - 4*a*d*f + 3*b*d*e - a*d*f*m + b*c*f*m))/((a*d - b*c)^4*(c + d*x)^(m + 5)*(5
0*m + 35*m^2 + 10*m^3 + m^4 + 24))